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Abstract

A nlo(lel-I)as('d I,QR method for controlling vibrations in cylindrical shells is presented.

Surfa('('-mounted piezoceranfic I)atches are employed as actuators which leads to unl)ounded

control inpul Ol)erators. Modified Donnell-Mushtari shell equations incorporating strong or

l,_elvin-Voigl damping are used to model the system. Tile Inodel is then abstractly fornmlated

in ternls of sesquilinear forms. This provides a fl'amework amenable for proving model well-

I)OSedness and convergence of LQR gains using analytic semigroup results combined with

LQI{ theory for unl)ounded input operators. Finally, numerical examples (lenmnstral.ing the

effectiveness of the method are l)resented.
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1 Introduction

The use of shell models to describe structural dynamics is pervasive in applications ranging

from noise reduction in aircraft to flow control in flexible pipes. While general shell equations

can be used in a variety of geometries, tile3: all share tile property that component displace-

ments are coupled due t.o the geometry. This leads to significant challenges when developing

appropriate models and approximation techniques, and constructing effective controllers.

In this paper, we consider cylindrical shells due to their prevalence in applications. Con-

trol is provided by piezoceramic patches bonded in pairs to tile surface of the shell. These

transducers provide significant actuating capahilities due to the piezoelectric effect in which

input voltages generate strains in the patches. Utilization of tile converse piezoelectric effect

(strains produce voltages) also allows the patches to be employed as sensors. When combined

with theh' light weight, space efl{iciency and reasonable cost, these properties make the patches

highly etTective control elements in a variety of applications. From a mathematical perspective,

the use of surface-mounted piezoceramic patches leads to unbounded control input operators.

F,xperimental work has already demonstrated the potential for success when employing tile

patches as actuators in applications involving cylindrical shells [8, 13]. However, these initial

investigations have not, in general, utilized the full potential of the patches due to limitations

in hardware, models, approximation techniques and control laws. For example, a common

means of calculating control gains is through the use of modal expansions [10]. I|owever,

closed form expressions for the modes can be determined only' for a limited set. of models with

severely restrictive boundary conditions. The use of incorrect modes when calculating control

gains can lead to loss of control authority, and possible controller instabilities. Hence for most

physical shell models, modes must first be accurately approximated if modal methods are

employed for control design.

In this paper, we present a model-based method for controlling shell vibrations. For sin>

plicity, the Donnell-Mushtari shells equations with Kelvin-Voigt damping are used as a model

(the assumption of strong or I(elvin-Voigt damping is reasonable and typical for many shell

materials such a.s aluminum). The methods are general, however, and can be applied to

higher-order models (e.g., Byrne-Flfigge-Lur'ye model) if the application warrants. A general

Galerkin method based on splines is then used to discretize the infinite dimensional sysl.em (see

[7] for details regarding the numerical method and a. comparison with finite element methods

for shells). Through the choice of basis, the method is constructed to be flexible with regard to

the boundary conditions and material nonhomogeneities which arise in typical applica.tions.

Furthermore, developinent of the model and approximation method in terms of a weak or

energy formulation facilitates consideration of the distributional derivatives which arise when

including patch contributions ill the model. This provides a setting suitable for direct simu-

lations and control design as well a.s computation of fl'equencies and modes for the shell.

The inodel and apl)roximate system are then employed in an LQR full state feedback

theory io obtain feedback gains and, ultimately, controlling voltages to the patches. While fldl

state measurements are not available using current instrumentation, and hence the techniques

cannot directly be inlplenmnte(I in experiments, they provide an important first step in the

design of e[[ective COml)ensators based on state estimal.es calculat('(I using a limited mnnl)er of

observations (see [5]). The consideration of the LQI{ performance also illustrates l)roperties of

tile svst.enl and model-1)ased control techniques and facilitates invesligations regarding issues



suchaspatch numberand configuration. Finally, the considerationof the problemprovidesa
step toward the developmentof model-basedcontrollers for fully coupledstructural acoustic
and fluid/structure systemsinvolving cylindrical shells.

The strong and weak formsof the Donnell-Mushtarishellsequationsare outlined in Sec-
tion 2. In presentingthis model, care is taken to inchlde both passive(material) and active
(actuator) contributions dueto the patches.An abstract form of the model,basedonses<tuilin-
earforms, is alsopresented.This providesa natural setting to prow•modelwell-posednessand
convergencepropertiesof the LQR control law. LQR fldl state feedbacklawsfor systemswith
noexogenousforceor for<'eswhichareperiodic in time arepresente(lin Section3. In the former
case,convergenceof the approxinmtesul)ol)timalgainsto the optimal gainsfor the infinite di-
mensionalsystelnis proven usinganalytic semigrouptheory in combinationwith LQR results
for unboundedcontrol input operators. A Fourier-Galerkinmethodfor approximating the sys-
tem dynamics is outlined in Section-1,and the effectivenesso[' the I,QR method for periodic
forcesis denlonstratedthrough a numericalexamplein Section5. This example<lemonstrates
that through the useof the model-basedmethodologywith general Galerkin approximations,

significant attenuation in shell vibrations can be obtained using piezoceramic patches.

2 PDE Model

The system under consideration consists of a thin cylindrical shell with surface-mounted piezo-

ceramic patches. It is assumed thai the i>atches are mounle<t in pairs with edges aligned with

the circumferential and longitudinal axes of the shell. The edges of the shell are taken to be

tixed in accordance with common experimental clainping techniques.

_Ik)sl)eci _, the geometry for the corresponding model, we consider the longitudinal direction

to be aligned along the :v-axis as depicted in Figure 1. Tllc <lisl>la<:enlents of the mi<t<lle

surface in the longitudinal, circumferential and transverse directions are denoted by u, v and

w, respectively while the length, thickness and radius of the shell are denoted by t,h, R. The

region occupied l)y the middle surface is denoted t_y Fo. Finally, the shell is assumed to have

mass density p, Young's lnodulus E, Poisson ratio re, Kelvin-\:oigt <laml)ing coefficient _:lJ and

air dalnping coetticient tt.

W
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Figure 1. Thin cvlindri<al shell with surface mountc,1 piezoceramic pat<:hes.



Actuator and/or sensorcapal)ilities are provided by s pairs of surface-mounted piezoce-

ra.mic patches. It is assumed that all the patches have thickness hpe, goung's modulus Ep_,

Poisson ratio up¢ and Kelvin-Voigt damping coefficient CDr,.. Furthermore, it is assumed that

tile glue bonding layer provides negligible contribution to the structural dynamics (the reader

is referred to [3, 5] for details concerning the incorporation of differing patch characteristics

and bonding layers in the ensuing models). The region covered by the i tt_ patch pair, with

edges at. xli, x2i, Oli, 02i, is delineated by the characteristic flmction

1 , 3"1i < x < x2i ,Oli < 0 < 0,2,x_,(.", O) = ....
0 , otherwise .

The indicator function S_,,,(,r, 0)= ,q'l,2(X)._'l.2(0), wtl(_re

1 , X < (x,i+zr2i)/2 f 1 O< (01i-4-02i)/2

^ i,q'1,2(3") = 0 , J' = (d'li "-}-;F2i)/2 , _q'l,2(O) = 0 0 = (Oil "-_ 02i)/2

-1 , x > (3'1i --_ 3"2i)/2 -1 0 >(Oli q'- 02i)/2

delineates the sense of the forces generated by the i °_ pair. The symmetry of the function

arises from the properly that for homogeneous patches having uniform thickness, equal bul

opposite strains are generated about the point {dri,i)i) = ((xli + .r2i)/2, (0,i+ 02,.)/2).

2.1 Strong Form of the Modeling Equation

We consider here the modified Donllell-Mushtari equations

02. 055. 0%,.
Rph_ - t¢ Oa, O0 i=, O. S_,(.,,,0)

02_ , ON0
Rph

" O0
_\% = nOo- _ O(No),,,. $,,_.(,,. o)

t_ i=_ O0

02w 0,, _ R O'eM,
Rift' _ + lilt _ Ox 2

1 02[tie
2 02Mx° + No

R 002 0x00

(2.1)

= [R
L o.2 +i=l t? 002

as a model for tile thin shell dynamics. As detailed in [3, 5, 9], these equations are obtained

through force an(1 moment balancing with only low order terms retained. Here al_., Mo, ./11o,

aim Mxo are internal moments while N_,, No, N0_ and A_0 denote internal force resultants.

External surface forces are denoted by 0.-, _)0.0,_ whereas the external resultants (line moments

and forces) generate(l 1)y the i tt_ patch pair are designated 1)3; (M,.)_,,. (M0)p,,, (N_.)p_,. (N0)p_,.

Expressions for tile internal force and mom(,nt resultants are derived under the assumption

thal. stress is prol)ortional to a linear combination of strain and strain rale. This yields a

model which incorporates Kelvin-k:oigt or strong internal damping. As detailed in [3, 5], the



r Tresultants A_., A_-0, Noz, M,:, M_.o, :11o,. derived under this assumption are

E h £ 2 Ep_ tb,_
N_. - 1 u2 (s: ÷ z'c0) + i=l --1 /2 (c_, + t%c0) \_,_,(,r,0)

_ __ lpe

£ 2CDv_hw_ CD]___(__,.4- l:-O) + --- _ (_.,, 4- P,,_-_O) \pe,(x,O)
4 1-u _ i=l l-ut, _

:\7_o= No.,.=
Eh )c....o + £ Ep_hw)s,,o\:,,,(.r.O)2(1 + u (1 + v,p_i=1

cl)h £ I%,4 2(1 +,,)Q-0 + CD_,, -_,o\,,_(.r,O);=,(1 + .;,,)'

Eh :_ £ 2Ep,._ (n. + r':,,h'o) \,,,,(J',O)
12(1 -- 1,2) (K,. -f P'KO) 4- i=1 :_(1- = _ )

2CD..a:{ (;,_, + u.,;,:o) \_,,,(,r O)('z)h :3 (k ,. 4- uko ) 4- 3(1 - _ )4- 12(1 -- /:e) i=, uv,

(2.2)

l':h :_ £ Ep, a3
:'tl,.o = :'II,_.,- 21(1 +u) r+ 3(1+Q,,) r\l"'('r'O)

i=1

('l)h3 £ CDr'_ a3
+21(1 + v,) "? + 3(1 + u,_) i\/"'(:r'O)

i=1

where l he constanl a3 = (h/2 +/11,, )a _ h3/8 results fron_ inl('gralion throug]l th(" lhi(:klless of

the patch. Expressions for the resultants No and ;'11_ can I)(, ol)tained I)y rel)lacing -:,., _-o, _:_..h:o

in the expressions for A:_. and M_. by co, g-,., too, t,,., resl)eclively. The midsurfac(' strains and

('ha,lges in ('urvalure forlh(' l)o,mell-Mushtari ,,lo(lelare

i)u 1 i)v u, ?h' 1 O,

_" t);r _o - 1_ i)O + R : '" = i).7 + R O0

_)2 '1U

K.r -- H O --
_)d .2

1 02u, "2 0_,,
T--

I{ 2 002 h' OxO0

(2.:1)

Note that for the undaml)d shell which is devoid of l)at('hes. 11,(, resultant equations ('2.'2)

reduce to lhe ('la.ssi('al l)oml(ql-Mushtari exl)r(,ssions

x, _ (_- 7, ) Lm 4-7i \ N 4-"' , M.,_ _'_,-(i 7,3_) Lo.,._4-n=oo_j

:\'_-(l-,,_) L-fiN+_/+"_] " :_/"- j._,ii-,,_) ,_ 00_ +"_J

Eh ru, 1 ?)u

x:., = x0. - _(l + ,..) L_ + _
, M,o = Mo.,.--

_ Eh 3 i)'e.,

12/?(1 + t:) O:rO0

(<g., _,,_,[:_]).
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To characterizetile external or active patch contributions, it is typical t.ostart with the
a.ssuml)tionthat tile strains generatedt)5."a l)atch are l)rOl)ortional to tile a.l)l)liedvoltage
[3]. Since differing voltagescan be applied to the outer and inner 1)atchesill the pair, we
will differentiate betweentile two with 1,}1(t)and I}2(1) used to denote the voltagesto the
outer and inner 1)archesin the i °_ pair, respectively. The prol)ortionality constant relating

the generaled strain to tile inl)ut voltage is designated by d31. As detailed in [3], the total

external mbments and forces generated by the patches are

= " T--\v_'(x'0) + 3R] - 3//(M.)_., 1 - u w tz,,_

( ,'_!o )v_, = 1 - ur,_

d3! (12

--. 2h_--x,_,(*,0)[li, - K_]

(-%),,., = _ _ -,,_ /,,,---_\,,.(.,0)S_,(:,.,0) [ + 2t_/ '_R/

(2.4)

(f_'_O)p,, -- I -- I."I,,-([3I_p_'(2:'O)SPei(3"O)[_/}I -- _/}2]

where a_ = (/,/2 + h_,)2 _ t[2/4 and aa = (t,/2 + hp_):' - ha/S. When sul)stituted into (2.1),

the expressions (2A) provide the input fl'om the l)atches when voltages are applied.

Finally, the tixe(1-edge boundary conditions

dtP

u=_,=w- Oa" -0 , x=O,_ (2.5)

are used to model the end 1)ehavior of the shell. These boundary conditions are al)propriate

for exl)erimental setups in which heavy endcaps prevent edge movement. Note that alternative

boundary conditions such as simt)ly supl)orted or "a.lmosl fixed" (see [_1]) can 1)e employed if

edge movement is SUSl)ected.

2.2 Weak Forln of Modeling Equations

The strong form (2.1) of the modeling equations requires first and second derivatives of the

moment and force resultants. As noted in (2.2) and (2.4), both the internal and external

moment and force resultants are discontinuous due to the piezoceramic patches. Hence formal

analysis and api)roxilnation using the strong form of the modeling equations lead to di[ficulties
due to differentiation of Dirac distributions.

To alleviate these difficulties, it. is advantageous to consider a weak form of the modeling

equations which can be derived from Hamilton's principle (energy considerations). While

equivalent to the strong form under suitable smoothness assumptions, the weak form 1)rovides

a more natural setting for analysis and approximalion.

The state varial)les for the prol)lem in second-order form are taken to l)e y = (u, _,, w) in

the state space H = L2(Fo) x L2(F0) x L2(F0). For the fixed-edge 1)oun(larv conditions (2.5),

the sl,ace of test fund io,,s is taken to be V= lt0J(F0) x ll0_(P0) x llg(F0) where

u,I(ro) = {,__ HI(to)I,_(o, 0) = ,_(c,0) = 0}

uJ(r,,) = {,_e u_(ro)I ,_(o,0) = ,_,(0.0) = ,_((.o) = ,_,.(/.0) = o}.
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For • = (u, u,w) and • = (ql, q2, q:3), the 1t and V inner products are taken t.o be

a.lld

£ 2J.:,_,_h_, [ 0,_, 1+ l - ,,i_,,\'_' ('' e) (_. + .,,, _,_)m--: + g/7 (
i=l

+ Kh (,_o+ u_. + 1 v)%o

[ 1
1 h_ O2q:{-- 7i(_e + _.)_ - -_(,.. + ,,,o) 0.,.---7

h " i)2 II3 h 2 , i)2 q:}
121_(_,:o + v_.) 002 12H (1 - t'Jr "7"'"o:ror1

s "2t,Tp, [ 3ht,_ • . O_q.,._
v_>,_ )_- ,:)(t,';. + vw _e) 0:)._

R2 ('{e + u_,_t{,.) i)02 t? ( 1 - Up,_)r _ d9

where ,%., ca, c_.o, __., _o, r are defined in (2.3) and d';. = lbtOdw. The dependence of the imwr

i)roducl on l.he Young's moduli is explicil.ly included in tl_e defi_lilion to provide a notation

for defining aualogous damlfing expressions later in this work.

The weak form of (2.1), as derived in [.5] from energy prinril)les, is given by

J,:oRph Ol _ q_ + If _\ "-- +--:" " ,Z,. _ ox _t _ Oq_ } d9 = 0-- -/_,i,.r_, - U_(X_.),,_, O,
i=1

/F{ _)2'17 _r()l]2 _r 0712 '_ i)'tl2}d3= 0
0 i=1

-l?O,,gl:_-F I{(M,.)_,{, O_t._ + (M0)_,,, ¢)02

(2.6)



for all kO = (71t,.q,2,713) ¢ V. A comparison between (2.6) and (2.1) illustrates that in the

weak forrn, derivatives are transferred from the discontinuous resultants onto suitably smooth

test flmctions. This alleviates the difficulties associated with the discontinuities an(1 reduces

smoothness requirenlents on approximate sohtions.

2.3 Abstract Formulation

To define apl)rol)rial.e sesquililxear forms, we group stiffness componel_ts separately from damp-

ing colnponents. To this end, we define czi : V × V --+ Ili , i = 1,2 by

_,,(,, q,) = ((_:, &_)+, ,v)r

+ _'o tt.'rlsd'_ • (2.7)

Note that ((CD,(:Dv,,)_,kII)l" differs frOt]l ((E, ls'pc)(I),q/)u only ill that Young's moduli are

replaced by Kelvin-Voigt damping coefficients. It can be directly verified that the stiffness

form oh satisfies

(HI) I(_1(¢, qJ)l _< Cllq_lvlqslt,, fox, some C x _ 11_ (gOl_lxlded)

(tt2) llec_,(q_,e) _> ('21¢[_, , for some c2 > 0 (I'-Elliptic)

(1t3) (rl(q_, qs) = o-x(qs, qS) (Symlnetric)

for all qb, qs E I:. Moreover, the damping term a2 satisfies

(m) 1_2(¢,*)[ _< _:,_l_lvl,l, , , for some (-3 ¢

(Hs) Re_(,I,,*) > _:,xl¢l_., fox-some c_ > 0

Bounded)

l'-Elliptic).

Remark 1. The symmetry of ox is dependent Ul)On the choice of shell model and ultimately

reflects the Maxwell-Betti reciprocity theorem. While the Donnell-Mushtari model yields a

symmetric sesquilinear form al, other models such as the Timoshenko shell model will not

yield a. symmetric form.

_lk) rel)resent control contributions, let U = ltU denote the ttilbert sl)ace of control inputs

and <lefine B C £(l;, l:*) by

(B,,(_), q,),.. ,, = (x_,)_,,_ + _(_ ,,_,, 00
o i= X

1 02'q:_ }R,2 (Mo )p,, 002 d'_

for _ ¢ I'. Here (.,.)w.,w denotes the usual duality product. Finally, with the definition

{I = (1/ph)[O_.,gto, gl,], we ca.,, write the weak form (2.6)in the a.bslracl variational fornx

(i)(t). q,)_,..,. + o-:(:,)(t),q,) + o-,(:j(t), q,) = <1_,,(t)+ .0(l), q,),.. ,.. (2.8)



To pose tile prol)lenl in a first-order form amenable for control applications, we define the

product spaces 7-/ = I, x H and 12 = I," x I/ with tile norms

I(_l, ,<)1_, = Id,,I( + 16_15

I(o,, o,_)1_,= 10112.+ Io_1(.

The state is taken to be z(/) = (.q(l),.0(l)) E 7-/. Finally, tile product space forcing terms are
fornmlated as

,,,,,:[0] 0]_0(_) ' /3.(t) " (2.9)

The weak form (2.8) can thelL be rewritten as

(-(t).A)v.v+<c(t).A)=(B,,.(t)+f;(t),,\)v._. ro,'ACF (2.10)

z(0) - _,,- (u,,,v,)

where (r: 12 × 12 -+ I1' is given by

_(O, _") = - (02, _"_)_, + _j(ol, U'2) + ,,2(02, r"2)

['or 0 = (01,02), _' = (e'_,¢"2) _ 12. As proven in [5, page t09], cr is 12 cont.i,,uous and for

A > 0, a(.,.) + A (-,-}u is 12-elliptic. I:ronl tile coutimlily of or, il follows that one can define

all opel'ator ,,4 E £(12,12")1)5' if(T,i\)= (_T,A)v.,v.

'li) ol)lain a strong form of the firsl-order system which is alJl_roprial,o for control purposes,

consider the svstem ol)erator

donlA = {(01,O2) e _loe c _tA,o, + :1_o__ /I}

A=[ 0 , ] (2.,1- A I - A2

with .'t1,.t_ C £(I:, I'*) defined by

(._li()l,(/)2)U, V = O'/((>1,(92) , i = [,2 .

It should be notated that A is tile negative of the restriction 1o domA of A E L;(12.12") so

that _r(T,A) = (-AT, A}u for T C domA, A G 12.

A strong tbrJn of lho al_slracl sysl.oln model is then given I_v

4(t)=Az(l)+B,(l)+O(t) in12" = _" x _'"
(:_.12)

_(0) = _o.

The rigorous equivalence of solul iol,s is estal_lished through l.he [bllowiug theorenls.

Theorem 1. l!nder ttypothoses (I11)-(tt5)on r_l and a2. A gellerates a,n analytic semigroup

7-(/) olt 12,7-/ and 12". In lorms of this semigroup, lho rel)rosentation

//z(/) = T(t)zo + 7-(1 - ._)[B,,(.,) + yl(.,)]d.s (2.13)

doJines a mild solution to (2.12) for z0 6 12" and Bu + .q 6 L-'( (0, 7'): 12"). I:urthermore, this

semigroup is {uniformly) exponelllially stable oil 12, 7-/and 12".



Theorem 2. Let z,g denote the semigroup solution to (2.12) given by ('2.13) and let v,,,,, denote

tile weak solution to (2.8). Ihlder hypotheses (Ill)-(II5), it. follows that c<q(z0, Y) = c_,.r(Zo, f')
for z0 C 7-/ and Y = B', + g E L2((0, T); 12").

Following tile convention of [14], we will use the same notation for the semigroups defined

on 12,7-I and 12" since each semigroup is an extension or restriction of the others. Note tha!

domA defined in ('2.11) is actually dora,i,,4, the domain of ,,J, as a. generator of T(/) in 7-/. As

detailed in Lemma 3.6.1 and ""xneorem 3.6.1 of [14] (see also Section IV.6 of [12] and (_hapter 2

Theorem 5.2 of [11]), the property that .A generates an analytic semigroup on V, 7-I and 12"

results from the continuity and 12-ellipticity of (7. The exponential stM)ility of T(t) on 'H

for second-order systems with strong damping is demonstrated in [1] while the exponential

stability of T(t) on 12 and V" in this setting is proven in Lemma 3.3 of [2]. Finally, Theorem '2

is a reformulation of Theorem 4.14 of [5] and details can be found therein.

3 LQR Control Problem

In the last. section, the PDE system modeling the dynamics of the thin shell wilh surface-

mounted piezoceramic actuators was written in the abstract firsl-order form

_(t) =Az(I)+B.(t)+g(t)

:(0) = :0

in 12_. In this sect.ion, LQR control results for both the original infinite dimensional problem

and apl)roximating finite dimensional problems will be discussed. Two cases will be consid-

ered, namely when g = 0 and g is periodic in time. In both cases, it. is assumed that state

observations in an observation space )" have the form

:oh(t) = C:(t) (3.1)

where C C £(H, }') is bounded. The assulnption thai C is t)ounded is made to siml)lify the

exposition and the reader is referred to [2] for arguments pertaining to the case of unbounded
observation ol)erators.

3.1 No Exogenous Input

For the case in which g = 0, the infinite horizon problem concerns the determination of a

control u which minimizes the quadratic cost functional

J(,,,:0/=fo (3.2)

subject to

_(t) = A:(t) + B,,(t)

:(0) = :o.

The 1)ositive, self-adjoint operator _, is used t.o weight various ('olnponenls of the control.



As detailed in [2, 5], if (A,B) is stabilizable and (A,C) is detectable, then the optiInal
control lninimizing (3.2) is given by

,ii(t) = -R-_B+II_:(_)

whereH solvesthe algebraicRiccati equation

(A*II + IIA - IlB_.-1B*II + C'C)z = 0 tbr all z E 12

and z(t) = S(t):o. ttere S(t ) is the closed loop semigroup generated by A - BR,-IB+II.

For implementation purl)oses, it is necessary to define an a.l_proximate system and controls,

and determine convergence criteria for these al)proximat.e controls when fed back into the

infinite dimensional system. The approximations are considered in a Galerkin fl'amework

with trajectories evolving in the finite dimensional subspaces 12x C 12 C 7/. II is assumed

that the al>proxiniation met.hod satisfies the standard <'onvcrgcnco conditions

(HIN) For any "+El], there exists a sequence _'_" E V x such that Iz- ?NIv -+ 0 as N --+ oc.

The finite dilnensional operators and al)proximatitlg syslctT_ are then detet'minod as fi)llows.

Tho operalor .4.x : 12'\: --+ 12x which approximates A is dofit,'d by rest rictitlg c, to 12\ ><,12x:

this yiehls

= fo,. -r. c v". (a.a)

Fk>t' ea('h -V, the (+0 semigroup OII 12'\: which is generated by M N is denoted by Tx(t). The

control operator is approxinlated by B x E /,_(_:, 12_') given by

( , x ) +. (a.4)/3' u,,\ = {u,B A)u for all ', q l:, ,\ q g x
24

while C x denotes the restriction of the observation Ol)eralor C to 12"+'. Finally, we 1o1 1_x

denot.o the usual orl.hogonal project.ion of N onto 12,x"which ],v definition satisfies

(i) PXTE12'\' forTE

(ii) (P:'+'T-T,A)u =0 foi'all A qF 'x .

This projectioll can be extended to px 6 £(12=, 12_') by replacing the H-inner produd (T, A)24

by the duality product (T. A)v,v and considering T E 12+.
The apl_roximalo problc_n corresponding to (2.10) wil.ll .q -tl can then be formulated as

d/

,:x(0 ) = p,_x.:o.

for all A G 12x

This has the sohttion

'l
z+'+'(t) = "T+\(I)pX:: o + T'\+(/_ ._)1"\ Lgx,(._)ds.

• J
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Tile following theoremstaken from [2, 5] can lyeusedto estat)lishthe convergenceof tile
approximategainst,otheir infinite dimensionalcounterpartsfor certain classesof shell models
(seespecifically Theorem7.10and Lemma 7.1a of [5]).

Theorem 3. Assume that the injection i : 1: _ tl is conq)acl.. Moreover, SUl)pose that tile

danal)ing ses(luilinear form can lye decomposed as _r2 = _czl + b2, for some S > 0, where the

continuous sesquilinear form g2 satisfies for some A E 1R

2

m ae(0,0) > -ylol{,- Alol}, for all OC l.

&_(O, 7/), is compacl on 1'.

If for some w ff I1{ and M _> 1, T(t) satisfies

IT(t)lc_u) _< al, _' t _> 0 ,

tlhell for alllV c7 > 0 lhere exists an integer J_l'_ such that fox J_IT _ J_l'_ ,

ITN(t)pXlciu ) _< ,_l_+_), , t > 0

fOE so[ue co|xstalxt ]]1 > 0 independent of N.

Theorem 4. Assume that the injection i : l" _-_ H is COllXl)a('|l. Eel the ses(luilinear form cr

associated with the tirst-or(ler system (2.10) be continuous and )2-ell|lyric. Assume that the

Ol)erators A, 13,0 of (2.11), (2.9), (3.1), respectively,, sa.tis_,: (,4, B) is stal)ilizat)le and (A,C)

is detectal)le where B E L_(I:, 12") is unbounded allld C C £(0/.{, )') IS bounded. (kmsider all

approxinlation melhod which satisIies (ttlN). Finally, suppose thai for fixed No and N > .\_,

the pair (A '_', B _v) is uniformly stabilizable and (A N, CN) is uniformly detectal)le.

Then for N suffi('iently large, there exists a unique nonnegative selfadjoint solution [I:" E

L_(V', )2) to the :_t;_ approxinlate a.lgebraic [{iccati equation

.A:¢'ll x + I|N,A N -- IINB:¢R-1Br"'II :v + C }' " C Jl_ : 0

in )2_'_. There also exist constants M3 _> 1 and _,':3 > 0 independent of N such that ,_,e'\_(t) =

(Ax-s'v_-_ rex_n'v)t satisfies

SJV(t) vN < M:3_-_:;' ' t > 0.

Moreover, tile convergence of tile lIiccati and control ol)eratol's

HNPN: --_ [lz in )2 fox' every : C )2"

-+0
BN'IIN/)N -- B*II c(_._')

a S _l_ _ r_ I . iS ot)llained.

11



Example 1. We considerin this examplea shellwith constantparanmtersp, E, v, cD. Such a

case would arise if" modeling a homogeneous shell or a shell in which the variance of material

properties across regions with actuators is negligible. The sesquilinear forms for this model

are specified in (2.7). I)ue to the constant coefficients, o._ can be written as o'2 = (_o1 -t- ¢5"2

where S = _E and 5-2((I), _P) = t/.Jl0 wTlad3" It follows immediately that

/["0 (_ 2H,a_(O,O) = _, O_d_ >_-:_lOlv

for all 0 E 1:. Tile bonn(ledness of the operator ,t2 generated by' 5"2 follows directly from

the boundedness ofgr 2. l;urthermore, it. is noted that .t_ -l C /_(1:*,_') can be written as an

operator on _" --+ l/ by .171 = ,.171i*i where tile injections i : 1." _ H,i* : it _+ I _" are

compact. Thus :171 is ('onll)act on I.'" which implies tllal .t]-1.,]2 is compact on _." since il is

formed from the product of compact and bounded linear operators. Finally, the exponential

stability of T(/), lhe stabilizability of (A, 13) and the detectal)ilit v of (A, B) are guaranleed by

Theorem 1. The hypotheses of Theorem 3 are then satisfied for this system and one oblains

uniform bounds on the a.l)proxinmting semigroups. Tlw cotlvergeuce of the [{iccal.i and control

operators is then obtained from Theorem 4.

3.2 Periodic Exogenous Input

A reasonable assuml)l.ion in many mechanical syst.ems is thai g is periodic" in time with 1)erio(l

r. The sys|,elll |O be ('ont.rolle_l iu this case is

-,(t) = A:(t)+ B.(t) + o(t)

:(o) = z(T)
(3.5)

an(I an approl)riate (tua(trali(' ftmctional to I)e minimized is

./_(,) = _., {IC:(_)l_.+ Irc'/_,,(t)l_.} dr.

Not(" 1,hat t]|e 1)eriodi(' exogenous term g can be used 1o model inl)Uts such as noise gener-

ated by rotating engine ('olnt)onents (e.g., l)ropellers or turbines} or periodic ele('tronmgtleti("
disturbances.

To guarantee the exisl.en('e of a unique Ricca.ti soluli()ll and control for tile systeln (3.5),

it is assumed that (A, _) is sl.al)ilizable and (A,C) is dele('lable, l:t,rthernlor(,, it is assumed

that g C L2(O, r: "H) and lhat Lq is boun(le(l. [rlld(,l" these conditions, it is verified in [(i] thai

the I{i('cati e(tualioll

has a unique solution.

tracking equation

A'Ii + IlA+ II8R-_B*II +C*C = 0

t:urlherlnore, if r denotes t.h(' r-i)('rio(li(" solution of the adjoint or

,:(/) = -[A- L_-'L;'tt]','(l)+ Ilg(t)

,'(0) = ,'(r)

12



and z is the closed loop solution of

-(t) = [.,4- t_-'t_'n]_(t) - t_-'t_',.(t) + n(t)

:(o) = _(T),

then the ol)timal control is given by

,.(_) = -_.-'_*[n:(t)- ,-(t)]. (3.6)

The LQI/ theory for this case is less complete than tha.l for systems with no exogenous

input and is currently limited to 1)ounded control inl)Uls B. The synthesis of the theory for

unbounded input ol)erators and periodic exogenous forces is currently under investigation.

The effectiveness of the method is illustrated in the final example of this work.

4 Approximation Method

A Galerkin method was used to apl)roxirnate the solutions u,v, w to the system (2.6), or

equivalently. (2.10). The approximating sut)sl)aces were taken of the forn_ V x = span {B,, k } ×

sI)an {/3_., } × span {B,,, k } where 13,,k, B_,,., B,_,k denote bases for the., _, and w displa.cenwnts,

respectively, qb exploit the t.ensor nature of the shell domain I'0 and periodicity in O, the bases

were constrtwte(l wilh Hmrier components in 0 and ('ul)ic splines in .r (see [7] for details). The

al)proxitnate displacements were then given by the exl)ansiolJs

,_ga

.x(t, o, _ ) = _ ,,t.(t)B,..(o, :r)
k----I

k=l

A_,,.

,,,:"(t, O, _,) = __, u,_,(t)13,,,_(O, ,_').
k=l

To obtain a finite dimensional system with matrices corresponding to the finite dimensional

operators in (3.3) and (3.4), the sesquilinear forms O.1 and o2 were restricted to V x. This yields

the malrix system

o 10 _ll"V .;iA'(t) = -K_," -KT}; ,)._r(t ) + [_._... [u(t)] + gA...(t )

¸, 10 _1"" o*'(o) ,j_

where 0a'(l) = [ul(t),'",u.t',,vl(/).'",v_;,wl(t),..., wA',,]T contains the A" = A',+A',,+A',

generalized l:'ourier coefficients. The ._ patch inputs at'(" contained in ,(t) = [uj (l),..., us(t)] "z'.

The reader is referre(l to [7] for details concerning the construclion of the mass, sliffness and

damping matrices ,'11"_''.1()', h';_ I, the i,,i)ut.s []A:,.gtA'(t ) and the initial conditions _'" A:Ill ' Y2 "

13



Multiplication by tile invertedmassmatrix yieldsthe (lauchy equation

-x(t) = AN=N(t) + BNu(t)+ :IX(l)
(4.1)

where =:¢ C t?2"_: = [O'_'(t),()x'(t)] T. This system forms the constraint equations used in the

I e "finite dimensional LQR theory discussed in S orion 3.

5 Numerical Example

We consider here an exogenous force g which is periodic in time with period r = 1000re

(500 Hz). The distribution of the force was te&en to ])e binormal in the transverse and

longitudinal direcl,ioi_s and ('e_l,ered a.l, (x,O) = ({'/2,0) an(I (w,0) = (f/2, rc) a,s (lel)i('ted in

Figure 2. The magnitude of the lransverse cOlnl)onent q,, was one hundred times that of the

longiludinal coniponent _,. so as to model an input consisling primarily of acoustic sources

located adja('ent to (f/2,0) and (t'/2, re).

Six l)airs of piezoceranlic I)at(:ll('s of length lc'm and radial llle&stlre 71"/:_were elnployed

as actuators. The loca.tions and material properties of th(' patches along with the diniensions

and physical parameters for lh(, shell are suninmrized in T'abh- 1.

To accommodate the periodic exogenous force g, control inputs to the twelve patches were

('omputed using the feedl)a('k law (3.6). Not.(" thai in this forinulal.ion, indei)endent voltages

are (telerniined for the individual l)atc]les. This provides lhe cal)abilily of generating t)oth

inl)lane forces and bending lnonients in the regions covered by the patches so thai longitudinal.
circunlferential and transverse vii)rations can be controlle(1.

Tinie histories of the ulwonlrolle(1 and ('ontrolte(I shell displa.cenients al the f)oint pl =

(3f/4, ,'r/32). del)icted in Figur(' 2. are plol.ted in Figure 3. The open leo 1) trajectories exhibit

both a transient resl)onse sel.lling into steady stale a.nd a bea.1 phellomenon due to the ('lose

1)roxiniity of the driving fre(lllellc 3' and natural frequencies for lh(, shell. At this ot)servation

x - Distribution of Normal Force '_,

., L2
\

i

,/
/

0 - Distribution /

of Normal Force

J

L
/

O= _
-" ,] 6 =! !} Li

r
i
I

Figure 2. Distril)ution of nornial forcing function at 0 = 0 and 0 = re. ()l)servation lines

L, = {(*.0)!0 < .,< :.0 = 7r/6}, 1.2 = {(:r,0)l, = :_;:/=l.0 <: 0 _ 2rr} and ol)servation point

p, = (:.lU4, re/:l:_).

':1



point, all three displacement components are reduced by more than 90% when controlling

voltages are fed back to tile patches.

_I_) illustrate tile spatial attenuation due t,o the feedback of voltages to tile patches, root

mean square (rms) plots of the uncontrolled and controlled trajectories along the axial line

L1 and circumferential line L2 (see Figure 2) are l)lot.l.ed in tqgure 4 and ,_), respectiw'ly.

For the open loop case, these plots illustrate a standing wave in all three components of the

disl)lacemenl (the slight a.symmetry in the axial plots is due to the longitudinal input (}_.).

The figures also demonstrate significant reductions in all three displacement levels, even in

regions nol covered I)y i)atches. This fl|rther illustrates the effectiveness through which the
model-t)ased control law can t)e used to attenuate shell vii)rations.

-3
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Figure 3. l!ncontrolled and controlled shell displacements al the point, lq

(a.) longit.udinal _l, (1)) circumferential 't,. (c) transverse _t, displacements;-

(controlled).

=
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Shell

Patches

Dimensious Parameters

h = .00127 m

R = .4 m

¢ = lm

/b,_ = .0001778 m

(>mers (:r, 0): (.25, 0), (.5, 0), (.75, 0)
(.25, (.75,

l)ilnensions: x: 0.1 cm, 0 : rr/3

p = 2700 kg/m "a

E = 7.1 x 101° N/n_ 2

cl) = 1..17 × 10 '_ Nm._

L/= .33

p = 58.97N._/m _

pp_ = 7600 k q/Tn 3

Ep_ = 6.3 × 10 m N/m 2

CD,,_ = 1.7 × 10 '_ Nm._

t% = .31

d:_l = 190 × 10 -12 m/l,"

Table 1. I)imensions and physical l)arameters for the shell and patches.

6 Conclusions

A model-based LQI{ method for controlling shell vii)rations has been l)resented here. While

develol)ed in the cou|,ext of a modified I)onnell-Mushtari cylindrical shell model, the metho(1

is quite general an(1 can be directly extended to other models and geometries, l_nder the

assumption of strong or I(elvin-Voigt damping (a reasonable and typical assunlption for many

shell materials), model well-posedness and conw'rgence of control gains is ol)lained using

analytic semigrou 1) theory ('omt)ined with LQR results for unl)ounded input operators.

The Galerkin method used to approximate the system dynanfics utilizes bases constructed

fi'om tensored Fourier polynomials and modified cubic splines. As discussed in [7], care nmst

be taken when developing methods for approximating shell dynamics so as to avoid shear or

membrane locking. One manifestation of locking is the existence of model dynamics which

are incorrectly al)l)roximate(I l)y the uumerica] method. The use of a numerical method which

exhibits locking can lead to a loss of control authority and potential ('onl.roller destabilization

if the approximations are sufficiently inaccurate. Further details regarding issues concerning

the al)proximation of shell dynamics and convergence properties of the numerical method can

be found in [7].

The numerical examl)le demonstrates the effectiveness of the model-based control method

for attenuating all three components of the shell displacement in the presence of both transient

and steady state dynamics. Furthermore, by; modeling the global shell dynamics and patch

interactions through coupled PDE and constructing the control law in terms of these PDE,

significant reductions in displacement levels throughout the shell are obtained, even in regions

devoid of patches. Numerical implementation of the LQR method in this manner provides a

first step loward the developnlent of model-l)ased state estimators and coml)ensators which

can 1)e experimentally iml)lemented in shell apl)lications.
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